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Abstract

Atmospheric releases of hazardous materials are
highly effective means to impact large populations.
We propose an atmospheric event reconstruction
framework that couples observed data and predictive
computer-intensive dispersion models via Bayesian
methodology. Due to the complexity of the model
framework, a sampling-based approach is taken
for posterior inference that combines Markov chain
Monte Carlo (MCMC) and sequential Monte Carlo
(SMC) strategies.

1. Introduction

Atmospheric event reconstruction infers character-
istics of an unknown release of a chemical or bio-
logical agent into the atmosphere (i.e., how much?
when? where?) and predicts its dispersion; Figure 1.
This is accomplished by coupling together a forward-
predictive atmospheric dispersion model and rela-
tively sparse sensor data to “estimate” the unknown
release input parameters of the dispersion model.
The complexity of atmospheric dispersion and the
wide range of possible release scenarios (stationary,
moving, multiple, etc.) present difficult challenges.
The complexity of the atmospheric dispersion pro-
cess manifests itself in ill-quantified and varying er-
rors associated with using a computer-based disper-
sion prediction model. This uncertainty is due to ap-
proximations made to the underlying physics of at-
mospheric dispersion, numeric errors associated with
the code itself, and, not least, to uncertainty associ-
ated with the assumed-known input parameters re-
lated to topology, meteorology, and turbulence. In
addition, accurate dispersion models are in general
computationally demanding, while at the same time
one seeks to conduct inference on the unknown re-
lease and its impact in a timely fashion and provide
valuable feedback for release consequence manage-
ment. Hence, we seek an inference method that is
able to efficiently use a given dispersion model and
propagate the uncertainty associated with the model
and the sensor data to uncertainty about the char-
acteristics of the release and its impact. To further

complicate matters, the problem itself is dynamic:
as new data is gathered concerning the release, we
need to efficiently update our state-of-knowledge.

A team of scientists at Lawrence Livermore
National Laboratory is implementing a dynamic
Bayesian approach to conduct inference on the un-
known release parameters. This approach allows
us to couple together, in a probabilistic way, ob-
served data and the dispersion model, along with
prior knowledge about the characteristics of the
source and the model-error. Initial posterior infer-
ence is carried out using Markov chain Monte Carlo
(MCMC) via parallel chains, and therefore via par-
allel dispersion model runs, to yield posterior real-
izations. Posterior updates are conducted using a
sequential Monte Carlo (SMC) based method, which
utilizes past posterior realizations and is well suited
for parallel runs of the dispersion model.

The next section follows with more details on the
problem setup and notation. In Section 3., we give
some details on the range of available dispersion
models and conditions that can lead to computa-
tional improvements. The general outline of the dy-
namic Bayesian model is given in Section 4., with the
following section describing the approach taken to
generate posterior realizations via MCMC and SMC.

2. Problem Setup and Notation

Our main goal is to conduct dynamic (posterior) in-
ference on an unknown atmospheric release and its
impact as more information (data) accumulates. Let
t = 1, 2, . . . index the time-points where we wish to
update our state-of-knowledge and let:

τt ≡ the time-point of the t-th update and

Tt ≡ (τt−1, τt], the t-th time interval.

The time-points {τt} can either be fixed in advance
or dynamically chosen based on the availability and
coverage of the incoming data.

The unknown atmospheric release can be due to
one or more simultaneous sources. Let:

θt,i ≡ collection of parameters characterizing
the i-th source in Tt.
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θt ≡ {θt,i}.

In particular, we focus on point sources, in which
case, θt,i = {xt,i, rt,i}, where:

xt,i ≡ the location of the i-th source in Tt.

rt,i ≡ the release rate of the i-th source in Tt.

Hence, in the t-th time interval, the i-th point source
is at location xt,i with an average release rate of rt,i.
We let

θ1:t ≡ {θ1, . . . ,θt} ,

and similarly for other parameters indexed by t.
The impact of the release can be observed in vari-

ous ways, for example by a network of sensor instru-
ments. Given the data from a network of sensors,
let:

sj ≡ the location of the j-th sensor.

cj,k ≡ the k-th average concentration reported
from the j-th sensor.

Tj,k ≡ (τ s
j,k, τe

j,k) ≡ the time interval in which
cj,k was measured over.

We note that the sensors do not need to be station-
ary nor does the data need to be associated with a
point (i.e., it can be associated with spatial blocks,
voxels). We define

dt ≡ {cj,k : (j, k) ∈ It}, where,

It ≡ {(j, k) : τt−1 < τe
j,k ≤ τt}, indexes the

sensor data that is available for use at the t-
th time point, but was not available at t− 1.

Hence, d1:t ≡ {d1, . . . ,dt} is all the data available
from time periods 1 to t.

An atmospheric dispersion model (a computer
simulation code) is used to relate the source pa-
rameters to the sensor data. The dispersion model
yields concentration predictions given various input
parameters, including the source parameters. In ad-
dition to source parameters, other major model in-
put parameters relate to the underlying meteorol-
ogy, topography, and turbulence. We will fix some
of the needed input parameters, but treat others (in
addition to the source parameters) as unknown and
include them in our model. Let

φ ≡ vector of additional dispersion model input
parameters treated as unknown.

Given all the needed input parameters, let:

Ĉ(s, τ) ≡ Ĉ(s, τ ;θ1:t,φ) ≡ the predicted con-
centration at location s at time τ ∈ (τ0, τt],
given a particular source history, θ1:t, and
other input parameters, φ.

Ĉ(B, T ) ≡ Ĉ(B, T ;θ1:t,φ) ≡ the predicted
average concentration in the spatial block
(voxel) B over the time period T , T ⊂ (τ0, τt].

To be in line with the observed sensor data, let:

Ĉj,k ≡ Ĉj,k(θ1:t,φ) ≡ Ĉ(sj , Tj,k;θ1:t,φ), for
Tj,k ⊂ (τ0, τt].

Ĉt ≡ Ĉt(θ1:t∗ ,φ) ≡ {Ĉj,k : (j, k) ∈ It},
t ≤ t∗, the model-predicted concentrations
corresponding to dt.

The chosen dispersion model is not perfect, but an
approximation to the underlying physical dispersion
processes. Therefore, we further define:

C(s, τ) ≡ the true (unknown) concentration at
location s at time τ .

C(B, T ) ≡ the true (unknown) average con-
centration over spatial block B in the time-
interval T .

In particular, let:

Cj,k ≡ C(sj , Tj,k) the true (unknown) concen-
tration corresponding to the k-th observation
from the j-th sensor.

Ct ≡ {Cj,k : (j, k) ∈ It}, the true concentra-
tions corresponding to dt.

The observed average concentrations, {cj,k}, are
thought to be related to the unknown true average
concentrations, {Cj,k}, through

cj,k = Cj,k + (measurement error).

The Cj,k’s are then thought to be related to the
model predicted concentrations via,

Cj,k = Ĉj,k + (model error).

3. On Atmospheric Dispersion Models

A core component of an atmospheric event recon-
struction is the efficient use of atmospheric disper-
sion models. The complexity of these models ranges
from the relatively simple and fast 2D Gaussian puff
model INPUFF (Petersen & Lavdas, 1986) to the
more complicated coupling of the National Atmo-
spheric Release Advisory Center’s (NARAC) disper-
sion code with assimilated observation and forecast
meteorological data. For more computationally de-
manding dispersion models such as NARAC’s LODI
code (Nasstrom et al., 2000) and finite-element dis-
persion models such as NARAC’s FEM3MP (Chan
& Stevens, 2000), it is desirable to limit the number
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Figure 1: An example of LODI-predicted, near-
surface, log-concentration plume due to a single
point source emitting at a constant rate.

of model runs while exploring possible input param-
eters. We consider two conditions which, if satisfied
for a given model, can dramatically accelerate pa-
rameter exploration.

Let

Ĝφ
x,T (x′, T ′) ≡ the average model-predicted
concentration at location x′ over the time in-
terval T ′ due to a source at location x with a
release rate of 1 in the time interval T , zero
release rate outside of T .

Hence, Ĝ gives the concentration at (x′, T ′) due
to a unit release-pulse at (x, T ). One can think of
Ĝ as tracking the release forward in time, from the
source to the sensor. Consider now a single point-
source located at xt in the t-th time interval and
releasing at the rate of rt; that is, θt = {xt, rt}. We
say that the dispersion model (code) is linear if

(L): Ĉ(x′, T ′;θ1:T ,φ) =
T∑

t=1

Ĝφ
xt,Tt

(x′, T ′)rt. (1)

That is, if the average predicted concentration at
location x′ over the time interval T ′, due to a point-
source characterized by θ1:T , can be written as the
sum of scaled “unit-puffs” from each individual time
period. Note that for a given series of source loca-
tions, x1:T , Ĉ can be evaluated for various release
rate histories, r1:T , without needing to recompute Ĝ
(which requires running the dispersion model code).

How Ĝ is computed depends on the dispersion
model in question. But typically, for a given source
location x and a time period T , a single dispersion
model run yields

Gφ
x,T ≡ {Ĝφ

x,T (x′j , T ′
j )},

for a pre-specified set of receiving sensors, {x′j , T ′
j },

for example, a regular grid covering the spatial do-
main of interest. Hence, if the source location is
changed in a given time period, a single dispersion
model run is needed to recompute Ĝ for that period
at all sensor sites, and Ĉ can be recomputed using
(1). Clearly this is an improvement over evaluating
Ĉ directly for the whole source period.

In atmospheric event reconstruction we are inter-
ested in trying out various source locations condi-
tional on data from a given set of sensors. In some
cases we can see the impact of various sources on a
given sensor in a single computer run. We say that
a dispersion model is reversible if

(R): Ĝφ
x,T (x′, T ′) = Ĥφ

x′,T ′(x, T ), (2)

where Ĥ is a “backward” dispersion model comple-
ment of Ĝ. Typically, Ĥ can be computed by run-
ning the same dispersion code as is used to compute
Ĝ, except in a “reverse mode”, where the source is
placed at the sensor location and some of the input
parameters are modified (e.g., wind-fields reversed,
etc.). If a computer code is reversible, we can in a
single run compute

Hφ
x′,T ′ ≡ {Ĥφ

x′,T ′(xi, Ti)} = {Ĝφ
xi,Ti

(x′, T ′)},

for a given (large) set of potential sources, {xi, Ti}.
In this case, the number of dispersion model runs
needed is equal to the number of sensor observa-
tions; not equal to the number of potential source
locations, which can be very large.

4. Model Development: A Bayesian
Approach

Given data from t time periods, d1:t, our main goal
is to conduct inference on the source parameters,
θ1:t via the posterior distribution,

πt(θ1:t) ≡ p(θ1:t |d1:t),

the probability distribution of the source parame-
ters, θ1:t, conditional on the observed data, d1:t.
In addition, as our setup is dynamic and we seek
a smooth transition from posterior inference at time
t− 1 to time t; from πt−1(θ1:t−1) to πt(θ1:t).
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The source terms are not the only parameters of
interest as we also seek posterior inference on the
impact of the release, that is, on the resulting con-
centration levels,

πt(C(u, τ)) ≡ p(C(u, τ) |d1:t), 0 < τ ≤ τt, u ∈ D,

where D is our spatial domain of interest. In general,
we seek to have access to the joint posterior

πt(C1:t,θ1:t,φ) ≡ p(C1:t,θ1:t,φ |d1:t).

The problem setup, as introduced in the previous
section, has two natural hierarchical components,
one due to the temporal dynamics and the second
one due to the from-source-to-sensor flow. We there-
fore adopt a dynamic model with a natural condi-
tional hierarchy within each time step. When pro-
ceeding from time period t− 1 to t, the basic model
components are:

Data Model: A conditional probability distribu-
tion describing the possible variation in the
newly available sensor data, dt, given the (hy-
pothesized) true underlying concentrations and
past data,

p(dt |Ct,d1:t−1,C1:t−1, ξ), (3)

where ξ is a vector of (potential) measurement-
error parameters.

Process Model: A probability model describing
the possible variation in Ct given past values
and current and past model predictions,

p(Ct | Ĉt,C1:t−1, Ĉ1:t−1,η)
= p(Ct |C1:t−1,θ1:t,φ,η),

(4)

where η is a vector of model-error parameters
and the second expression follows since Ĉt∗ =
Ĉt∗(θ1:t,φ), t∗ = 1, . . . , t.

Parameter Model: A prior parameter model:

p(θt |θ1:t−1)p(φ)p(ξ)p(η). (5)

Note that, jointly,

p(Ct,θt |C1:t−1,θ1:t−1,φ,η)
= p(Ct |C1:t−1,θ1:t,φ,η)p(θt |θ1:t−1).

The joint distribution of the model parameters can
therefore be written as

p(C1:t,θ1:t,φ,η, ξ) = p(ξ)p(η)p(φ)

×
t∏

t∗=1

p(Ct∗ ,θt∗ |C1:t∗−1,θ1:t∗−1,φ,η),

where we define C1:0 = θ1:0 = ∅ (an empty set of
parameters), and similarly for other parameters.

Due to the dynamic setup and the hierarchical
breakdown within each time step, inference flows
naturally from time period t − 1 to t. Assume at
time t− 1 we have access to the joint posterior dis-
tribution of all parameters of interest,

πt−1(C1:t−1,θ1:t−1,φ,η, ξ)
= p(C1:t−1,θ1:t−1,φ,η, ξ |d1:t−1).

The dynamic parameter model (5) for the source
terms yields the one-step-ahead predictive distribu-
tion as

πt−1(θ1:t) = p(θ1:t |d1:t−1)
= p(θt |θ1:t−1)p(θ1:t−1 |d1:t−1)
= p(θt |θ1:t−1)πt−1(θ1:t−1).

More generally, jointly we have that,

πt−1(C1:t,θ1:t,φ,η, ξ)
= p(Ct,θt |C1:t−1,θ1:t−1,φ,η)
× πt−1(C1:t−1,θ1:t−1,φ,η, ξ).

Then, given (potential) new data at time step t, the
joint posterior at t is given by

πt(C1:t,θ1:t,φ,η, ξ) ∝ p(dt |Ct,d1:t−1,C1:t−1, ξ)
× πt−1(C1:t,θ1:t,φ,η, ξ).

(6)

We shall now discuss the individual model-steps in
more details, while in the next section we shall out-
line how one can conduct inference using the above
joint posterior distribution.

4.1 The Measurement Data Model

The measurement data model (3) relates the ob-
served data to the unobserved concentration plume
due to the release. If the data is recorded by a
network of well established sensors, one can often
elicited the needed distributions from the sensors’
specifications.

A sensor’s accuracy is often specified in terms of
its detection and saturation limits, along with its
within-range accuracy (Gibbons & Coleman, 2001).
The measurement errors can often be assumed to
be independent between different sensors and also
roughly temporally uncorrelated. As such, we can
write the data model (3) as,

p(dt |Ct,d1:t−1,C1:t−1, ξ) = p(dt |Ct)

=
∏

(j,k)∈It

p(cj,k |Cj,k), (7)
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where p(cj,k |Cj,k) is the distribution of the k-th ob-
servation from the j-th sensor; (j, k) ∈ It. Given
the specifications of the instrument, we assume

p(cj,k |Cj,k) =


f(cj,k;Cj,k), if l < cj,k < u,∫ l

0
f(dc;Cj,t), if cj,k = l,∫∞

u
f(dc;Cj,k), if cj,k = u,

where f is a given probability density, l is the sen-
sor’s detection limit, and u is the sensor’s saturation
limit. We take the density f to be given by a trun-
cated Gaussian distribution (truncated below zero)
with untruncated mean equal to Cj,k and variance
a2 + b2 ∗C2

j,k, with a and b elicited from the sensor’s
specifications. Note that the untruncated Gaussian
distribution has standard deviation a when Cj,k = 0,
which can be related to the detection limit of the in-
strument (i.e., its sensitivity at low concentrations).
For large concentrations, the relative standard devi-
ation is approximately b, which again can be related
to the sensor’s spec.

4.2 The Concentration Process Model

The concentration model (4) captures the model-
error associated with using the dispersion model to
predict the impact of the release. This error pro-
cess is meant to capture both the physical (and nu-
merical) errors associated with the model and the
impact of feeding it with inaccurate input param-
eters (e.g., meteorology). We expect to see both
spatial and temporal correlated model-errors. Ad-
ditionally, we expect the (marginal) variation of the
errors to increase with the predicted concentration
levels. However, the exact form of both the correla-
tion structure and the amount of variation is tightly
linked to the dispersion model in question; a less ac-
curate and capable dispersion model needs a more
flexible error-model than a better established dis-
persion model. In addition, we prefer to specify the
model in the dynamic fashion as hinted at in (4).
The conditional specification in (4) allows for an eas-
ier transition from time period t−1 to t than a joint
specification.

At time t, with new data dt = {cj,k : (i, j) ∈ It},
we assume that the needed concentrations for (7) are
given by,

log Cj,k = log Ĉj,k(θ1:t,φ) + δj,k

= log Ĉj,k + δj,k, (j, k) ∈ It,
(8)

where δj,k = δ(sj , Tj,k) is the model-error term (on
log-scale); note that we are conditioning on the
model input parameters θ1:t and φ. This approach

mirrors that suggested by Bayarri et al. (2005).
Since the model is specified on log-scale, Cj,k is never
exactly equal to zero. However, this is not of practi-
cal concern. In the case when Ĉj,k is predicted to be
exactly equal to zero, we replace it by a small value
which has no practical difference from zero concen-
tration (in terms of sensors’ detection limits, etc.).

The key component to (8) is how the “bias” term,
δj,k, is treated. Let

δt ≡ vec{δj,k : (j, k) ∈ It}.

We are currently investigating the following auto-
regressive model for the δt’s;

δt = F1:t−1δ1:t−1 + νt,

where F1:t−1 is a known matrix and νt = vec{νj,k :
(j, k) ∈ It} is a stochastic error term. We take the
elements of F1:t−1 to be such that,

δj,k = δj,k−1 + νj,k, (j, k) ∈ It,

where δ0 ≡ vec{deltaj,0} is given an initial distri-
bution. The error term νt is assumed multivariate
Gaussian with zero mean and variance-covariance
matrix that exhibits spatial and temporal correla-
tion, and variation that depends on the predicted
concentration levels.

If the dispersion model is linear (1), an alternative
approach might be to model the errors associated
with Ĝφ in (1); that is, write

C(s, T ) =
T∑

t=1

Gt(s, T ),

where Gt(s, T ) = Ĝφ
xt,Tt

(s, T )rt+ error, in a the case
of a single source, with a natural extension to mul-
tiple sources.

4.3 Source and Input Parameters Model

The release can be due to a single or multiple
sources, it can be stationary or moving, and have a
very complex release-rate profile. Hence, the source
parameter model (5), p(θt |θ1:t−1), needs to be very
flexible.

We approximate the impact of the i-th source in
the t-th time period using a point source at loca-
tion xt,i emitting at a constant release rate of rt,i;
θt,i = {xt,i, rt,i}. For stationary sources with slowly
varying release rates (compared to the length of the
time periods {Tt}), one expects this representation
to be sufficient. However, for continuously moving
sources, the time periods {Tt} need to be sufficiently
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small to reduce the impact that results from the
point-source representation (i.e., the source “jumps”
from one location to another as one moves from one
time period to the next).

We assume that the dynamics of the location of
the i-th source to be given by,

xt,i = xt−1,i + νx
t,i, t = 1, 2, . . . ,

where x0,i is given an initial distribution fx
i (·)

and νx
t,i are independently, zero-mean Gaussian dis-

tributed. Note that if the {νt,i} are given a zero
variance the source is stationary. The model above
can easily be extended to include more sophisticated
target-tracking dynamics (see, e.g., Ramachandra,
1999)

For the release rate, we assume that,

log rt,i = log rt−1,i + νr
t,i, if rt−1,i > 0,

where νr
t,i are independently, zero-mean Gaussian

distributed. If rt−1,i = 0, then we assume that rt,i is
either zero or follows an initial non-zero release-rate
distribution;

p(rt,i | rt−1,) = αiI(rt,i = 0) + (1− αi)fr
i (rt,i),

where αi is a given mixture probability and fr
i (·) a

given initial release-rate distribution.

We take the prior for the additional model input
parameters φ to be given by an ensemble of a priori
likely values;

p(φ) =
M∑
i=1

ωiI(φ = φi),

where the {ωi} are weights that sum to 1 and {φi}
a pre-specified ensemble.

5. Posterior Inference

We resort to sampling-based methods to conduct in-
ference based on the joint posterior distribution (6).
In designing posterior sampler for (6) there are two
criteria we keep in mind: (1) efficient generation of
an initial posterior sample at any given time period
and (2) smooth transition from a posterior sample
from one time period to the next. We shall now
outline the basic steps taken; further details are in
Johannesson et al. (2004).

The event reconstruction is initiated when con-
centrations above limit of detection are observed for
the first time. Hence, at a given time period t0, we
seek to draw realizations from

πt0(C1:t0 ,θ1:t0 ,φ,η, ξ),

where one or more of the sensor concentrations of
d1:t0 are above the limit of detection. The second
inference (and the first of many to come) is when a
new data dt0+1 becomes available and we want to
draw realizations from

πt0+1(C1:t0+1,θ1:t0+1,φ,η, ξ),

without completely discarding the effort that went
into generating realizations from time periods 1 to
t0. The approach we take is to first carry out a clas-
sical Markov chain Monte Carlo (MCMC) sampling
from the posterior distribution πt0 and then up-
date those realizations using sequential Monte Carlo
(SMC) techniques when proceeding to sample from
πt0+1. The basic ingredients needed are Markov
chain transition kernels for MCMC and important
sampling proposal distributions for SMC.

In what follows, let

Xt ≡ {Ct,θt}

and X1:t = {C1:t,θ1:t}.

5.1 Markov Chain Transition Kernels

A joint Markov chain transition kernel is constructed
using a sequence of proposal distributions with the
resulting joint proposal being either accepted or re-
jected according to the Metropolis-Hasting accep-
tance ratio (e.g., Gelman et al., 2004, p. 289).

Let X1:t be the current state of the Markov chain;
for the moment we shall ignore other (potential)
non-dynamic parameters (φ, η, and ξ). A new state,
X∗

1:t, is proposed by modifying a subset of the pa-
rameters making up X1:t through a sequence of pro-
posal distributions;

qt(X∗
1:t |X1:t) =
qt(θ∗1:t |θ1:t,C1:t)qt(C∗

1:t |θ
∗
1:t,C1:t).

(9)

Hence, a source parameters proposal is carried out
first, followed by model-error proposal (i.e., proposal
for the true concentration levels). The joint proposal
X1:t = {C∗

1:t,θ
∗
1:t} is then either accepted or rejected

according to the Metropolis-Hastings proposal ratio,

ρt(X∗
1:t;X1:t) =
p(d1:t |X∗

1:t)p(X∗
1:t)qt(X1:t |X∗

1:t)
p(d1:t |X1:t)p(X1:t)qt(X∗

1:t |X1:t)
,

(10)

with X∗
1:t becoming the next state of the Markov

chain if ρt(X∗
1:t;X1:t) > u, where u is a random

draw from a uniform distribution between 0 and 1.
For the source parameters θ1:t we adopt random-

walk proposal distributions for both the source lo-
cation vectors and the release-rate vectors. We have
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experimented both with “blind” random-walk pro-
posal and Langevin-type (gradient-based) proposal
distributions (e.g., Liu, 2001, ch. 9) with good re-
sults. Both the source location and the release-rate
proposal steps include a random components which
determine how many parameters and which to pro-
pose changes to, including leaving the source param-
eters unchanged.

The concentration proposal is carried out through
the model-errors of (8), conditioning on the pre-
dicted concentrations Ĉ1:t(θ∗1:t,φ). We are currently
exploring multi-variate random walk for the model-
errors {δt} and hyper-parameters associated with
the model errors (η).

Proposal distribution can be created for other
model parameters (e.g., ξ and φ), if not fixed, and
added to the joint proposal (9).

5.2 Sequential Proposal Distributions

For updating past posterior realizations from time
periods 1 through t − 1 to reflect newly available
data dt, we use sequential Monte Carlo (SMC) meth-
ods; see, for example Doucet et al. (2001) and Liu
(2001). For the time dependent parameters of the
model, SMC needs a dynamic proposal distribution
that generates realizations of X1:t, conditional on a
realizations of X1:t−1 from πt−1. These new realiza-
tions are then weighted to reflect the new data.

In most cases the new data dt carries limited in-
formation about the most recent source parameters,
θt, as it can take some time for the source to dis-
perse to the sensors. That is, θt has in general little
impact on the predicted concentrations Ĉt(θ1:t,φ),
with earlier release parameters mostly being respon-
sible for the current concentration levels at the sen-
sor sites. This suggests we can be relaxed in how
we exactly extend X1:t−1 to X1:t, but need to be
more concerned about the impact of the new data
on past model parameters (X1:t−1). We therefore
adopt the auxiliary SMC method suggested by Pitt
& Shephard (1999, 2001) to select which of the
past realizations are carried forward, followed by
MCMC rejuvenation, as suggested by MacEachern
et al. (1999), Gilks & Berzuini (2001), and Godsill
& Clapp (2001). The whole procedure is outlined
in Table 1. The auxiliary SMC steps are 1 and 2.
Step 1 assigns weights to past realizations {X(i)

1:t−1}
that partly reflect the new data. To do this, a de-
terministic extension of X1:t−1 to time period t is
carried out in step 1.1, via the function f̂t, which
can be taken to be very simple (e.g., assume zero re-
lease at t). The newly created weights {v(i)

1:t−1} are
used to discriminate between past realizations when

choosing which one to extend to time period t via
classical SMC step; step 2. Step 2 yields a weighted
importance sample {w̃(i)

1:t, X̃
(i)
1:t}. Note that so far,

model parameters associated with the time period
1 to t − 1, and parameters that do not vary with
time, have not been altered from previous realiza-
tions. The MCMC step 3 carries out perturbation
of past (and current) model parameters, using the
MCMC transition kernels of previous section.

Table 1: SMC-MCMC Hybrid.

0. (Initial Sample) Start with the initial, equal-

weighted sample {X(i)
1:t0

: i = 1, . . . , N}, de-
rived from the initial MCMC samples.

For t = t0 + 1, . . . :

1 (Proposal Weights) For i = 1, . . . , N :

1.1 Put X̂(i)
t = f̂t(X

(i)
1:t−1).

1.2 Compute v
(i)
1:t−1 = p(dt | X̂(i)

t ).

2 (Extending to time t) For i = 1, . . . , N :

2.1 Sample Ĩi ∈ {1, . . . , N} with p(Ĩi = j) ∝
v
(j)
1:t−1; j = 1, . . . , N .

2.2 Generate X̃(i)
t ∼ qt(Xt |X(Ĩi)

1:t−1) and let

X̃(i)
1:t ≡ (X(Ĩi)

1:t−1, X̃
(i)
t ).

2.3 Compute the importance-sample weight

w̃
(i)
1:t =

p(dt | X̃(i)
t )p(X̃(i)

t | X̃(i)
1:t−1)

qt(X̃
(i)
t |X(i)

1:t−1)

1

v
(i)
1:t−1

.

3 (MCMC Perturbation) For i = 1, . . . , N :

3.1 Select Ĩi ∈ {1, . . . , N} with p(Ĩi = j) ∝
w̃

(j)
1:t ; j = 1, . . . , N , and put X(i,0)

1:t =

X̃(Ĩi)
1:t .

3.2 For j = 1, . . . , B: [B given]

3.2.1 Propose X̌1:t ∼ qt(X̌1:t |X(i,j−1)
1:t ).

3.2.2 Compute the M-H ratio (10), and if

accepted put X(i,j)
1:t = X̌1:t, other-

wise put X(i,j)
1:t = X(i,j−1)

1:t .

3.3 Put X(i)
1:t = X(i,B)

1:t , then {X(i)
1:t : i =

1, . . . , N} is an equal-weighted sample
from πt(X1:t).
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6. Discussion

We have carried out numerous studies testing dif-
ferent aspects of the proposed framework with great
success; see, for example, Johannesson et al. (2004)
and Chow et al. (2006). As outlined, the framework
is able to efficiently take advantage of large high per-
formance parallel computers, even if the dispersion
model itself is not parallelized. Further work aims
at investigating models that capture the error asso-
ciated with the dispersion model and finalizing the
implementation of the atmospheric event reconstruc-
tion computer framework.
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